
Chebyshev Based Spectral Representations of Neutron-Star Equations of State
Tianji Zhou, advised by Dr. Lee Lindblom

Department of Physics and Astronomy, Haverford College, and Department of Physics, University of California at San Diego

Introduction

• The equation of state describes the relationship
between pressure (P ) and energy density (ϵ);

• Given an equation of state ϵ = ϵ(P ),
Oppenheimer and Volkoff solved the Einstein
equations to get

dm

dr
= 4πr2ϵ (1)

dP

dr
= −(ϵ + P )m + 4πr3P

r(r − 2m)
; (2)

• Neutron star densities surpass lab limits, with no
consensus on models, but mass (M) and radius
(R) data can help determine their equations of
state [1];

• Aim to represent the equations of state
numerically with spectral methods to find the
best-fit equations of state with M and R data [2];

• Simple power-law bases have been used in
previous studies but show slow convergence when
adding more spectral parameters for first-order
and second-order phase transitions [3];

• Chebyshev polynomials can serve as a
faster-converging orthogonal basis, defined by:

Tn(x) = cos(n arccos(x)) (3)
for n = 0, 1, 2, 3, ...

Figure 1:These curves correspond to 34 nuclear-theory models
of the neutron stars’ equations of state.

Figure 2:These curves correspond to the equations of state in
Figure 1, showing the relationship between mass and radius for
different equations of state.

Casual Spectral Representation

• The sound speed of the baryonic fluid is defined
by v2 = dp/dϵ;

• To ensure the causality of the fluid, we define a
velocity function

Υ = c2 − v2

v2 ; (4)
• We could either represent using a pressure-based

or enthalpy-based approach;
• For pressure-based approach, reduce the sound

speed equation to
ϵ(P ) = ϵ0 + (P − P0) + ∫ P

P0
Υ(P ′) dP ′; (5)

• Set Υ to be expressed by spectral method,

Υ(P, υa) = Υ0 exp

Nparms−1∑

a=0
υa(1 + z)Ta(z)

 , (6)
where υa is a set of spectral parameters;

• Define
z = −1 + 2 log(P/P0)/ log(Pmax/P0). (7)

to ensure −1 ≤ z ≤ 1 for P0 ≤ P ≤ Pmax;
• Enthalpy-based representation is similar to

pressure-based representation by re-expressing
P = P (h) and ϵ = ϵ(P (h)) = ϵ(h) where h is the
enthalpy.

Testing The Representations

• Define the error function χ2 = 1
N

∑N
i=0[log(ϵ(υa)

ϵi
)]2;

• Using datasets from the first-order and
second-order phase transitions to optimize the
error function with the best-fitted sets of spectral
coefficients;

Figure 3:Modeling errors χ using pressure-based Chebyshev
polynomial spectral expansions for first-order phase transitions.

Figure 4:Modeling errors χ using pressure-based Chebyshev
polynomial spectral expansions for second-order phase transi-
tions.

Figure 5:The average modeling error for different nuclear-theory
models between Chebyshev enthalpy-based and pressure-based
representations.

Conclusion

• When Nparms increases, the Chebyshev
polynomial representation converges;

• Pressure-based representation does a better job
than enthalpy-based representation;

• In the future, we will explore how well the
Chebyshev polynomial pressure-based
representation models the equations of state by
using M and R data with noise.
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