

Model-independent Probes of Dark Sector Physics

Tianji Zhou¹, Daniel Grin¹, Tristan L. Smith² and Maxwell Aifer^{1, 3}

¹Department of Physics and Astronomy, Haverford College, 370 Lancaster Ave, Haverford, Pennsylvania 19041, USA ²Department of Physics and Astronomy, Swarthmore College, Swarthmore, Pennsylvania 19081, USA ³Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA

Take Away!

models to ease Hubble tension;

matter methods and principal

> Analyzed the dark matter

> Used the generalized dark

component analysis.

Introduction

Hubble Tension:

The difference for Hubble constant measurement;
 Remained at a level ranging from 4 - 6σ [2];
 The standard dark matter model: Λ-CDM model
 Cosmologists are exploring new models;

Model-independent Approach:

- Studied Wess-Zumino Dark Radiation (WZDR) Model and Chameleon Early Dark Energy (CEDE) Model as a benchmark;
- Tested the models using the generalized dark matter (GDM) methods [3] and principal component analysis (PCA);
 Studied the equation of state (w) and the effective sound speed (c²_{d eff}) to describe GDM fluids;
- The dark matter fluid includes elements only interact with photons and baryons through gravitational interactions;
- PCA reduces the dimensionality of high-dimensional data to a small number of dominant templates, known as principal components (PCs);
- ➤ New models represented by **linear combinations** of PCs.

> Described the system with 3 equations of motion.

Analysis of Output

WZDR Model:

- For w, the transition happens around z_t ;
- Relativistic to non-relativistic to relativistic;
- > $c_{d,eff}^2$ is similar to the Λ -CDM model;
- Has subtle difference at high k and low a.

CEDE Model:

- For w, there are oscillatory structures differed from the Λ-CDM model;
- > $c_{d,eff}^2$ shows similar oscillatory structures like w.

- Found the equation of state by definition: w_d = ^{P_d}/_{ρ_d}.
 → Obtained the expression of effective sound speed based on the definition of the sound speed: c²_d(k, a) = ^{δP_d}/_{δρ_d}.
- Programmed these equations and other basic parameters of the universe in CLASS code [6];
- Projected the effective sound speed onto the PCs;
 Applied cosmic microwave background (CMB) data to this method to obtain constraints of these models.

WZDR Model Description

- In Λ-CDM, the cold dark matter (CDM) and neutrinos form the dark fluid;
- WZDR model assumes the existence of two additional dark species: one is massless (φ) and the other is massive (ξ) [7];
 3 major phases:
 - 1. Thermal and chemical equilibrium;
 - 2. The universe expands and the temperature drops. ξ decays to ϕ becomes dominant. This happens at the **transition**

CEDE Model Description

Added a scalar field (φ) with a mass (m_φ) to the early universe around matter-radiation equality [8];
 Conformally coupled with dark matter;
 Diluted in the later universe;

Acknowledgements

We appreciate **KINSC Research Travel Funding** and **KINSC Summer Scholars** to fund the research and travel. We acknowledge support in part by **NASA** ATP grant 17-ATP17-0162 earlier in this project. Maxwell Aifer from UMBC also contributes to the project.

Current Work and Next Step

- Generated PCs from the Fisher Matrix and CMB perturbation theory;
 Project $c_{d,eff}^2$ onto the PCs;
- \succ Plot the coefficients versus the PCs;
- Consider the effects of uncertainties to coefficients;
- > Project real CMB data to obtain constraints to these models.

References

Aloni D., Berlin A., Joseph M., Schmaltz M., Weiner N., Phys. Rev. D, 105, 123516 (2022).
Hu J-P, Wang F-Y., Universe 9 (2023) 2, 94.

3. ξ becomes negligible, and ϕ becomes **dominant**.

 \succ Reduces Hubble tension to around 2.7 σ [1].

